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Abstract

Robotic missions to planetary surfaces are
becoming more ambitious and of longer duration.
The nominal mission timeline for the MER (Mars
Exploration Rovers) called Spirit and Opportunity
currently on the Martian surface is 90 days, with
extensions to 180 days and beyond depending on
rover health. The upcoming 2009 MSL (Mars
Science Laboratory) mission is  planned to be 300-
500 days, and will possibly involve traverses on
the order of multiple kilometers. Due to time
delays of up to 40 minutes round-trip for control,
the rovers will require a high degree of onboard
autonomous behavior that must also adapt to
declining health and unknown environmental
conditions during a long duration mission. This
paper presents an algorithm for onboard adaptive
learning of weights within a rover hierarchical
behavior control framework called SMART
(System for Mobility and Access to Rough
Terrain). SMART is based on earlier work in free
flow behavior hierarchies for planetary surface
rovers (Huntsberger & Rose, 1998; Huntsberger,
2001). We also present the results of some
preliminary laboratory and field studies.

1.   Introduction

High-value science data acquisition on rough terrain
(example shown in Figure 1(a)) is beyond the capabilities
of current NASA rover designs. Although the JPL
technology prototype rover SRR (Sample Return Rover)
shown in Figure 1(b) has the ability to mechanically adapt
itself to changing terrain by varying its shoulder angles,
such an operation will require a high level of adaptability
in the onboard control algorithms in order to maintain the
health of the rover. In addition, as the mission progresses,
the onboard control must also adapt to degraded

performance due to wear-and-tear on components such as
the steering and drive mechanisms.

We have developed a behavior-based framework
called SMART (System for Mobility and Access to Rough
Terrain) to address these concerns at the system level by
treating rover motion, rover health, and resource
management within a free flow behavior hierarchy
(Huntsberger & Rose, 1998; Huntsberger, 2001). SMART
uses a previously developed control architecture called
BISMARC (Biologically Inspired System for Map-based
Autonomous Rover Control) for long duration missions
(Huntsberger and Rose, 1998; Huntsberger, 2001). It is
based on a modified free-flow hierarchy (FFH) similar to
the DAMN architecture (Rosenblatt and Payton, 1989;
Tyrrell, 1993), and has been used successfully for a
number of different simulated mission scenarios including
multiple cache retrieval (Huntsberger, 1997), fault
tolerance for long duration missions (Huntsberger, 1998),
and site preparation (Huntsberger, et al., 1999).

The major limitation in the original implementation of
BISMARC in all of our previous studies was the use of
fixed weights in the FFH, which effectively made it unable
to adapt to situations outside of the original world model.
This paper presents an onboard mechanism for learning

Figure 1: Planetary surface terrain and technology example
for autonomous access to high risk, scientifically interesting
regions. (a) Mars cliff-face with signs of water outflows; (b)
JPL technology prototype of a terrain-adaptive reconfigurable
rover.
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weights that will adapt not only to the dynamic
environment around the rover, but also to the degradation
of mechanical components during the mission lifetime.
Underlying behaviors and the organization of the FFH are
predefined based on mission requirements and rover
capabilities. Our goal in this research is not to find the
optimal policy, but instead one that is “good enough” to
maintain rover health while still achieving its higher levels
goals.

The next section briefly describes the organization of
the action selection mechanism of BISMARC, followed by
a discussion of the learning mechanism of the system.
Next, we discuss related work, and close with
experimental studies and conclusions.

2.   BISMARC Organization

An example of the action selection mechanism used in
BISMARC is shown in Figure 2 for a rough terrain
navigation mission that is used for the experimental
studies reported in this paper. The rectangular boxes
represent behaviors and the ovals are sensory inputs (either
fixed, direct, or derived). At the top are the high level
behaviors including Don’t Tip Over, Go to Goal, Avoid
Obstacles, Preserve Motors, Warm Up, Get Power, and
Sleep at Night. These goals are related to both task and
rover safety. For example, since most planetary surface
rovers have only visual sensors for navigation, the sensory
input for Proximity to Night is derived from knowledge of
the sun’s position and forces the rover to sleep at night by
weighting the input to Sleep at Night heavier (4.0) than
any other behavior in the hierarchy. The Avoid Obstacles

behavior uses the output of an onboard local navigation
algorithm as recommendations for viable paths. The rovers
are equipped with solar panels and the Rest behavior
allows the batteries to recharge if the sun is up. The Rest
behavior is also used to cool down the motors for Preserve
Motors if they are working too hard going up a steep
slope, or to stop and turn on the heaters for Warm Up if the
internal temperature of the rover drops below a safety
threshold.

The intermediate level Change CG behavior is an
example of a sophisticated combination behavior
discussed in Section 1 that works to shift the center of
gravity of the rover (see Figure 1(b)) much like an animal
does in response to traveling up or along a steep slope.
This behavior is implemented using a finite state machine
based on a well-tested algorithm for pose reconfiguration
(Schenker, et al., 2003a-b). The algorithm uses the
onboard gyroscopes and accelerometers, which would be
equivalent to the inner ear mechanism in mammals for roll
and pitch determination. Recommendations for shoulder
angle and arm end position changes to help stabilize the
rover are generated and passed on to the bottom level
behaviors.

The intermediate level behaviors are designed to
interact with both the short term memory (STM), which
corresponds to perceived sensory stimuli, and the long
term memory (LTM), which encodes remembered sensory
information. Control loops are prevented through temporal
penalties (shown as T-ovals in Figure 2) that constrain the
system to only repeat a behavior a predetermined number
of times. The bottom level behaviors in the hierarchy fuse
the sensory inputs and the activations of the higher level

Figure 2: Free-flow hierarchy action selection mechanism for rough terrain navigation mission scenario.  Ovals represent inputs
derived from sensory stimuli, rectangular boxes are behaviors, and double ovals are temporal penalties.  All weights on inputs
to behaviors are 1.0 unless otherwise noted. Segmented boxes and ovals represent directional inputs (only cardinal directions
shown but in practice continuous coverage). See text for further details.
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behaviors in order to select appropriate actions for rover
safety and goal achievement. The rover will continue to
move until it achieves the goal position as determined by a
rover localization algorithm (Hoffman, et al., 1998) shown
as the Goal Present input to Stop in Figure 2, or its health
deteriorates due to dead batteries, freezing, burned out
motors, or tipping over.

SMART’s map-based LTM (Long Term Memory) is
similar to hippocampus place cells. Landmarks
corresponding to obstacles and goals are extensively
mapped and stored for comparison to perceived inputs,
with a probabilistic update of memories based on the
positional variance of the rover and the match strength of
the current perception to memory contents. A LTM
landmark is encoded as a four-byte field that includes
relative height of the landmark (2 bytes), actions leading to
the landmark (1 byte), and accelerometer readings on the
robot (1 byte). A similar approach is the coupled
goal/representation framework of (Mataric, 1992; Mataric,
1997a). Another alternate approach is an occupancy grid
that gives dense coverage of the environment, but doesn’t
scale well for long duration planetary surface missions
(Elfes, 1987).

3. Learning Mechanism

Learning mechanisms for planetary surface rovers have the
same requirements as terrestrial robots (Mahadevan &
Connell, 1992): (1) noise immunity, (2) fast convergence,
(3) incrementality (improving performance while
learning), (4) tractability (iterations of algorithm doable in
real-time), and (5) groundedness (information limited to
onboard sensors). In particular, the fast convergence and
tractability requirements are key for planetary surface
rovers because they are typically computationally
challenged (i.e., MER uses a 27Mhz CPU) due to power
constraints. We address (2) and (4) through a behavior
decomposition process similar to the use of heterogeneous
reward functions developed by Mataric (Mataric, 1997b).
We give the details of the reward function for updating the
weights for the Move  behavior (see Figure 2) in this
section. For point (3) we use the W-learning algorithm of
Humphrys (Humphrys, 1997) supplemented with a
dynamic reward function directly related to rover health.
For (1) we use a sequence memory similar to that of
McCallum (McCallum, 1995-96) and Michaud and
Mataric (Michaud & Mataric, 1998-99). Finally, we
restrict our inputs to onboard sensors only as stipulated in
point (5).

The weights on the links between modules are usually
heuristically set based on mission goals. These goals are
specified at a relatively high level without complete
knowledge of the operating environment of the rover.
There is however a priority derived from mission risk
mitigation requirements explicitly included in the relative
size of the weights. The maximum activation of the high

level behaviors are weighted to give the highest priorities
to rover preservation. In order of highest priority to lowest
these are Sleep at Night, Avoid Obstacles, Preserve
Motors, Don’t Tip Over, Get Power, and Warm Up. In
addition, rover health will degrade as the mission
progresses, and weights chosen at full health may no
longer be appropriate. Rover health is defined in Equation
(1) as:

where power is the current battery levels, motor_current is
the current draw on the motors, A G E _ M A X is the
maximum expected lifetime for the rover, age  is the
current age of the rover, and wp and wmc are weights
(currently both set to 0.5 since dead batteries are as lethal
as burned-out drive motors). A dynamic reward function is
defined in SMART based on changes in rover health and
progress towards goal achievement for each step:

where ∆ is the change, and wrh and wga are weights
(currently set to 0.65 and 0.35 based on the relative
importance of health and goal achievement determined
experimentally).

Learning is only enabled in the weights on the links
feeding into the Move behavior at the lowest level in the
FFH shown in Figure 2. This is done in order to maintain
the rover safety embodied in the relatively high priorities
of the Sleep at Night, Get Power, and Warm Up high level
behaviors. A modified version of the W-learning algorithm
of Humphrys (Humphrys, 1997) is used in SMART to
dynamically update the weights. In W-learning, agents
suggest their actions with a weight W and the maximum
weight is chosen as the leader. In our case there are three
behaviors vying for control of Move, these being Go to
Goal, Avoid Obstacles, and Preserve Motors. W-learning
uses the difference between the predicted reward P and the

actual reward A to determine which weights are to be

updated (Humphrys, 1997).
Humphrys used a genetic algorithm run off-line to

determine his reward functions. We instead use the
expression in Equation (2) in order to capture the true
change in the rover health through an action (the motor
currents and battery levels are read in real-time). Rover
behavior is extensively studied prior to launch through
both laboratory and field trial studies, so the predicted
changes in rover battery levels and motor currents are

rover_health = wp power + wmc (1 - motor_current)  (AGE_MAX - age)
AGE_MAX

wp + wmc = 1
(1)

reward = wrhΔrover_health + wgaΔgoal_achievement
wrh + wga = 1

(2)



known for rover movement and in fact are used for
resource management planning during the missions.

A small sampling of the predicted rewards are shown
in Figure 3 for typical rover behavior. The reward (1) for
movement towards the goal on even terrain from a start
position is the highest since rover health has a minimal
change compared to progress towards the goal. As
progressively steeper slopes are attempted, the rewards (2-
3) start out being positive since progress towards the goal
is still outweighing the impact on rover health, but become
more and more negative (4-5) as the steepness increases.
Backing-off the slope has a negative reward (6-7) for the
relatively benign slopes since the rover health
improvement in rover health is outweighed by the lack of
progress towards the goal, becoming positive (8-9) for the
steeper slopes. The reward (10) for driving sideways is
slightly negative since minimal impact on the rover health
is outweighed by the movement away from the goal. The
reward is less negative than that associated with driving up
the steeper slopes which will come into play during the
experimental studies. The last reward (11), that of driving
away from the goal is a large negative value primarily due
to the movement in a direction totally opposite the goal.

The Move/Tilt Arm/Change Shoulder Angles, Rest,
Stop, and Sleep actions at the lowest level in the FFH

shown in Figure 2 are mutually exclusive and the action
with the maximum activation is chosen using a
competitive action selection. The Tilt Arm, Change
Shoulder Angles, and Move actions at the lowest level in
the FFH shown in Figure 2 can be done simultaneously, so
they are treated as a unit during the action selection
process. However, progress towards the goal will be
compromised if the rover tips over, so there is a dynamic
relationship between the two higher level goals of Go to
Goal and Don’t Tip Over. The W-learning algorithm is
applied to the links feeding into the Move behavior in the
hierarchy with a time delay between activations. The
Don’t Tip Over behavior activation occurs in the first time
slice, followed by the Go to Goal weight updates and
activation. This maintains the rover health, while at the
same time making progress towards the goal. Another
instance where this process is applied is the relative
direction that the rover moves. In order to Preserve the
Motors, the rover will attempt to climb a steep incline, and
either back off, go sideways, or rest if the perceived motor
currents in the rear wheels are too high. If the weights are
not dynamically adjusted, this could lead to dithering
where the rover attempts to climb, backs off, and then
attempts to climb in the same direction. Adaptive
weighting using the W-learning algorithm changes the
direction of attack, since progress towards the goal is
being compromised by the dithering. For this situation,
there is a time delay between application of W-learning to
the two incoming links of Go to Goal and Preserve
Motors, with Preserve Motors occurring first, followed by
Go to Goal.

Although our convergence times are typically within
500ms, it is still desirable to limit CPU cycles devoted to
learning if it may not be needed. Noise in the sensors can
lead to state aliasing where the same sequence of state
transitions experienced previously is not recognized. One
possible solution to this problem is to provide a memory to
the system (McCallum, 1995-96, Michaud & Mataric,
1998-99). We maintain a fixed number of memory traces
(currently 100) of limited length (currently 25 steps) of the
most recent experiences of the rover. As new experiences
come in they are checked for similarity to previous
sequences and merged. In the event that the behavior
sequence is new, the oldest traces are deleted. These traces
are organized using the tree structure developed by
Michaud and Mataric (Michaud & Mataric, 1998-99).
Rather than use these traces to trigger alternate behaviors
as done by Michaud and Mataric, we instead use them to
seed the W-learning process with the sequence of expected
rewards. In our preliminary studies, we have seen a
speedup of a factor of two in our step-wise learning.

4. Related Work

Prior research by Tyrrell (Tyrrell, 1993) and Bryson
(Bryson, 2000) demonstrated superior performance of a
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Figure 3: Sample of rewards derived using Equation (2)
for a number of different types of actions (in reality the
action space is continuous). Reference point is rover
health of 1.0 except in cases where the rover is reacting to
a current situation (i.e., backing off climbing a slope). All
moves are with respect to the goal actions are: (1) normal
driving on even terrain, (2) driving up a 5° slope, (3)
driving up a 10° slope, (4) driving up a 25° slope, (5)
driving up a 45° slope, (6) backing-off a 5° slope drive,
(7) backing-off a 10° slope drive, (8) backing-off a 25°
slope drive, (9) backing-off a 45° slope drive, (10) driving
sideways, and (11) driving backwards. The weights were
both set to 0.5 in Equation (1) and to 0.65 and 0.35
respectively for the change in rover health and change in
relation to goal in Equation (2).



hierarchical system for action selection over purely
reactive systems. In particular, the agents in the Edmund
system of Bryson (Bryson, 2000) are built as related
sensing and action functions that exhibit selective attention
with the payoff of a higher efficiency than the modified
Rosenblatt and Payton (RP) mechanisms of Tyrell
(Tyrrell, 1993). A comprehensive overview of action
selection systems can be found in Bryson (Bryson, 2001).
Although BISMARC uses the modified RP mechanisms,
the nodes in the free flow behavior hierarchy perform
operations that are more sophisticated than simple
combination. In some sense, they are closer to the
competence structures of Bryson (Bryson, 2000), in that a
collection of plan elements are organized as a prioritized
finite state machine whose outputs converge on a specific
goal. These nodes have undergone extensive evaluation at
the modular level either through field or mission testing.

To date, there has been very little research into
learning for hierarchical action selection systems which
are typically characterized by multiple, possibly
conflicting goals. The dominant learning strategy for
single goal achievement such as robotic navigation has
been reinforcement learning (RL), an unsupervised method
that seeks to maximize a reward signal based on the utility
of pairings of input and output states and their subsequent
actions (Kaelbling, 1993; Kaebling, et al., 1996; Sutton
and Barto, 1998). One of the most popular RL algorithms
is Q-learning (Watkins, 1989) and its variations such as Q-
PSP (Horiuchi, et al., 1996), and hierarchical Q-learning
(Lin, 1993). RL algorithms typically suffer from slow
convergence, large state spaces, and difficulties in
handling uncertain sensory inputs. Continuous valued
versions of the Q-learning algorithm have been developed
to address the large state space problem (Gaskett, et al.,
1999; Takahashi, et al., 1999; Takeda, et al., 2000). These
works used a continuous Q-value derived from neural
networks or other function approximation methods. The
state space concerns were also addressed for deterministic
environments using a forgetting mechanism in a penalty-
based hierarchical Q-learning algorithm, which reduces the
amount of state information that an agent must maintain by
using a low level agent to maintain local state information
and a high level agent to maintain global state information
(Yen, et al., 2001; Yen and Hickey, 2002). During
planetary surface rover operations, the prediction of a state
following an action is difficult since it is closer to a non-
deterministic process due to interactions with the terrain.
Most of the RL studies to date have been confined to
simulations and interior navigation in 2-D environments.

An alternate learning system that performs in the
presence of a multiple conflicting goals where subtasks are
only partially satisfied (Maes, 1991) is W-learning and its
variations, which are based on compromise or negotiated
decision making between agents (Humphrys, 1997). W-
learning is a memory efficient method that is more suited
for operation onboard planetary surface rovers than

traditional or hierarchical Q-learning systems, and a
temporally prioritized modification of it is running under
SMART.

5. Experimental Studies

In order to determine the utility of SMART for planetary
surface operations in rough terrain, we have run three
different types of experimental studies: (1) 2000 simulated
rough terrain navigation missions, (2) 50 laboratory
sequences with SRR, and (3) 4 sequences with SRR in
natural terrain in the Arroyo Seco outside JPL. We have
attempted to match the fidelity of the simulation models
for terrain and rovers to those used for the laboratory and
field studies.

5.1 Simulation studies

The first series of experimental studies used simulated
terrain based on MOLA (Mars Orbiter Laser Altimeter)
data from the Dao Valis region of Mars, which had slopes
of up to 65°. A 200 meter by 200 meter sub-area of the
rough terrain dataset is shown in Figure 4 and a view of

the SRR during one of the simulation runs is shown in
Figure 5. Mission success was defined as the attainment of
the randomly selected goal position without dying due to
freezing, dead batteries, burned out motors, or tipping
over. The experimental setup included:

• Random starting and goal positions
• Timestep of 0.1s
• 10% loss of traction in rocky terrain
• 1 sq. km study area (5 cm resolution)
• Top speed of 15 cm/sec

The model of SRR matches the physical platform and has
two sets of stereo cameras, one body-mounted and one

Figure 4: Terrain model for rough terrain navigation
mission, with goal position at box and path shown as
solid line. Study zone is 200 m by 200 m and terrain
variation is from 271 m to 300 m.



mast mounted, a 3 DOF (degrees of freedom) manipulator
and a twelve week battery lifetime supplemented with

solar panels.
Our studies had a 95.9% mission success with the

onboard adaptive learning mechanism, and a 43% success
rate without the adaptive learning. The primary failure
mode (3.8%) for the system with learning enabled was
dead batteries which from a mission standpoint would
indicate a need for larger solar panels. An analysis of the
57% of the missions that failed with no learning enabled
gives:

• Tipping over - 27%
• Dead batteries - 15%
• Burned out motors - 9%
• Freezing - 6%

Since 27% of the missions failed due to tipping over, the
initial weights for inputs to Move were set too high, giving
an overall bias to the Get  to Goal behavior over rover
safety related behaviors such as Don’t Tip Over.

5.2 Laboratory studies
The second set of experimental studies was run in the
Planetary Robotics Lab (PRL) at JPL and used the JPL
technology prototype rover SRR shown in Figure 6. SRR
has independently articulated shoulders which allow it to
dynamically change its pose and lean much like an animal
does on sloped terrain. The full range of shoulder
movement is shown in Figure 6. SRR also has independent
four wheel drive and independent four wheel steering
enabling it to travel sideways.

One of the experimental runs is shown in Figure 7,
where we have set up a worse case scenario of opposing

hills and valleys for the rover. The SRR (Sample Return
Rover) successfully negotiated the course based on a
subnet of the full hierarchy shown in Figure 2. This subnet
included the Don’t Tip Over, Go to Goal, Avoid Obstacles,
and Preserve Motors top level nodes. The Warm Up, Get
Power, and Sleep at Night top level node activation levels
were all set to zero since the interior of the lab was warm

Figure 5: The SRR climbing a 35° slope in simulated
terrain derived from MOLA data in the Dao Valis region
of Mars. The model of the rover contained full
kinematics and dynamics and used a probabilistic slip
assumption. The FFH shown in Figure 2 was used for
control and adaptive learning for 2000 simulation runs.

Figure 6: Sample Return Rover (SRR) range of hardware
adaptation including clockwise from upper left - the lowest
range of the shoulder articulation, the highest range of
shoulder articulation, and the mid-range of shoulder
articulation coupled with extended arm movement.

Figure 7: Clockwise from upper left: SRR performing
continuous pose reconfiguration using its adjustable
shoulders during a traverse in the Planetary Robotics Lab at
JPL. The terrain was a set of two opposing hills and valleys,
with 45º degree slopes.



and not exposed to the sun.
Another series of laboratory trials used a ramp set at a

65° slope with the rover positioned at the bottom. The goal
position was on the other side of the ramp which was
beyond SRR’s stability capabilities to climb even with
shoulder reconfiguration. Initially the rover attempted to
climb the slope, but repeatedly backed off and then tried
again. This behavior can be traced to the combination of
Go to Goal, Avoid Obstacles, and Preserve Motors using
the default weights. The learning algorithm progressively
reduced the Go to Goal weight from 1.5 to 0.45 while at
the same time increasing the weights of Go to Goal and
Avoid Obstacles from 1.0 to a high-water mark of 1.6,
which caused the rover to try to skirt the ramp by moving
sideways while still maintaining movement towards the
goal. Although adaptation of the Avoid Obstacles weights
lagged behind those of the Preserve Motors, the ramp was
eventually seen as an obstacle and the obstacle avoidance
behavior kicked in. As the rover cleared the side of the
ramp it then started movement towards the goal due to the
Go to Goal behavior output dominating the inputs to Move
without any obstacles or sloped terrain in front of the
rover.

The dynamic weight adaptation seen in the ramp trials
is shown in Figure 8, where the weights are shown for the
Go to Goal, Avoid Obstacles, and Preserve Motors
behaviors. There are rapid changes in the weights as the
rover attempts to climb the ramp, followed by oscillations
about a fixed point after numerous backing-off behaviors
and then skirting the edge of the ramp. The variability in
the weights over the trials is greatest when they are
stabilizing to their new values (as seen in the size of the
error bars). The eventual outcome of the sequence was that

the rover learned to treat steeply sloped terrain as an
obstacle, while at the same time trying to prevent motor
burn-out. In the field, this behavior would be equivalent to
the rover trying to find a safe way up a slope to get to the
goal, as will be shown in the next sub-section.

5.3 Field studies

The last series of experimental studies was done in the
Arroyo Seco, a dry wash that is next to JPL. This site is
used for technology prototype rover testing and is
characterized by a mixture of benign sand and rocky beds
that have been scoured by the periodic water flow
bordered by steeply sloped cliffs. An example of the
terrain with SRR during a traverse is shown in Figure 9.
The learning component of SMART was not fully
implemented at the time, so only qualitative results are
available at this time.

We were only able to complete a preliminary series of
4 runs in the Arroyo Seco and will return for more data
collection in the spring of 2004 after the winter rains. An
example of the skirting behavior along a slope, as
previously seen in the laboratory studies discussed in
section 4.2, is shown in Figure 10, where the rover
approaches the slope in the left frame and is not able to
climb, skirts to the side in the middle frame, and finally
gets enough traction to climb to the top of the rise and
continue on towards the goal.

6.  Conclusions

We have developed an autonomous rover control system
called SMART for planetary rovers traversing rough and
highly sloped terrain. It is based on the previously
developed free flow hierarchical action selection of

Figure 9: SRR in the bottom of a rock-strewn gully in the
Arroyo Seco outside of JPL. The right shoulder is almost
horizontal compared to the left one because the rover just
came off of the rock behind the right rear wheel.
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BISMARC, coupled with an onboard learning mechanism
for changing weights in the hierarchy. The learning
mechanism enabled SMART to maintain rover health in
both simulated and actual rover studies in rough terrain. Of
particular importance for future NASA rover missions was
the analysis of the rover failures, indicating that an
additional 52.9% of missions would potentially be
successful with adaptive learning. We are currently
optimizing the memory trace implementation and
preparing for further trials in the Arroyo Seco (results
should be collected in time for the meeting). We are also
starting the integration of the SMART control techniques
into the recently developed CAMPOUT (Control
Architecture for Multi-robot Planetary Outposts) running
on two technology prototype rovers at JPL (Huntsberger,
et al., 2003; Schenker, et al., 2003a).
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